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We present a series of similarity solutions to describe the temperature field as liquid
spreads from a line source into a porous rock saturated with liquid of higher tem-
perature. We identify slow and fast flow regimes. In the slow flow regime, the liquid
is heated to the far-field temperature by conduction of heat from the far field. In the
fast flow regime, there is negligible conduction of heat from the far field. Instead, the
liquid is heated to the far-field temperature by cooling a region of the host rock near
the source, and an internal boundary layer develops within the newly injected liquid.
We successfully test our quantitative theoretical predictions with a series of laboratory
experiments in which water was injected into a consolidated bed of sand filled with
liquid of different temperature. We extend our model to describe the vaporization
of liquid as it spreads slowly from a central source into a superheated porous rock.
A further family of similarity solutions shows that the rate of vaporization depends
upon the injection rate as well as upon the initial superheat of the reservoir. For high
injection rates, the liquid is typically heated to the interface temperature long before
reaching the interface. The rate of vaporization then becomes independent of the
initial liquid temperature, and depends mainly on the reservoir superheat. For lower
injection rates, heat is conducted from ahead of the boiling front into the liquid.
As a result, for progressively smaller injection rates, an increasing fraction of the
liquid vaporizes, until virtually all the liquid boils, and only a very small liquid zone
develops in the rock. Again, we successfully test our theoretical predictions with a
laboratory experiment in which liquid water was injected into a superheated layer of
permeable sandstone.

1. Introduction
There is a growing interest in the use of geothermal resources for the production of

energy. Superheated geothermal systems provide one of the most attractive resources
for such power generation since the thermal energy stored in the ground may be
efficiently harnessed as high-enthalpy vapour (Grant, Donaldson & Bixley 1982;
Elder 1981). However, as fluids are drawn from a reservoir, natural recharge may be
unable to maintain the fluid reserves, and the associated pressure falls. This leads
to a decline in the production potential of the reservoir. To compensate for this
effect, various schemes for liquid reinjection have been developed (Barker, Koenig &
Stark 1995; Enedy et al. 1993; Grant et al. 1982). As liquid migrates into a reservoir,
part of the liquid vaporizes thereby restoring the pressure. In order to evaluate the



304 A. W. Woods and S. D. Fitzgerald

effectiveness of a recharge scheme, it is important to understand the fundamental
controls on the mass fraction of the liquid which vaporizes and the temperature
distribution in the liquid.

Pruess et al. (1987) and Woods & Fitzgerald (1993; hereafter called Part 1), analysed
the rapid injection, migration and vaporization of liquid into geothermal reservoirs.
Under such circumstances, the dynamic pressure associated with the newly formed
vapour controls the saturation temperature at the boiling interface and hence the
mass fraction of liquid which vaporizes (see the Appendix). In addition, for such
rapid liquid migration, thermal diffusion has a negligible role in the heat transfer.
Therefore, the rock ahead of the vaporizing liquid front does not cool until it is
invaded by the front. Furthermore, owing to the thermal inertia of a permeable rock,
isotherms advance more slowly than the liquid itself, and so liquid is heated up to the
interfacial temperature long before reaching the interface. This rapid injection regime
is therefore inefficient in that the thermal energy used to heat up the large body
of water behind the interface to the vaporization temperature is not immediately
available for vaporization of the liquid.

In the present continuation of the work, we describe the very different flow regime
which develops if the liquid is injected into the reservoir so slowly that the effects
of heat conduction become important. For such slow injection, the vapour pres-
sure remains nearly uniform and close to the original reservoir pressure (Appendix;
Fitzgerald & Woods 1995). Now, conduction of heat from the far field controls the
vaporization process, affecting both the temperature distribution in the liquid and the
mass fraction of liquid which vaporizes. The slow injection regime may develop as
liquid migrates into the hot rock from a vertical well-bore.

We present a new class of similarity solutions which identify how the temperature
field evolves as fluid of one temperature displaces fluid of a second temperature
within a permeable porous layer. We successfully compare our model with a series of
carefully controlled laboratory experiments, and we then extend the model to account
for vaporization when the liquid slowly invades a superheated permeable rock. Finally
we discuss the application of our results to developing strategies of liquid-injection in
geothermal systems.

2. Thermal evolution of liquid–liquid displacements
We describe the two-dimensional axisymmetric spreading of a volume flux of liquid,

2πQ per unit length, from a central source through a porous rock of porosity φ and
permeability k (figure 1). We assume the temperature of the liquid on injection is To
and that the host rock is initially saturated with liquid of temperature T2. In §4, we
extend the analysis to include the effects of vaporization.

The Darcy velocity at radius r in the liquid is purely radial and has the value

u = Q/r. (2.1)

The temperature T evolves with time t according to the thermal advection–diffusion
equation

∂T

∂t
+
λwQ

r

∂T

∂r
=
κ

r

∂

∂r

(
r
∂T

∂r

)
(2.2)

where κ is the average thermal diffusivity (Batchelor 1974) and the constant λw
represents the dimensionless heat capacity of the liquid, made dimensionless by the
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Figure 1. Schematic of the injection geometry. Arrows on the figure represent
the direction of the flow.

mass-averaged heat capacity of the liquid (ρlCpl) and solid matrix (ρsCps),

λw = ρlCpl /[ρlCplφ+ ρsCps(1− φ)]. (2.3)

λw is typically of order unity: for example for liquid water invading sandstone
of porosity 0.35, ρlCpl = 4.05 × 106 J m−3 K−1, ρsCps = 2.37 × 106 J m−3 K−1 and so
λw ∼ 1.37. For injection at a rate Q = Qot

γ , three cases arise. If γ < 0, then the role of
the advective heat transport becomes progressively smaller with time, and the rate of
change of temperature in the matrix is controlled by conduction, leading to long-time
asymptotic similarity solutions for a line source of heat as described by Carslaw &
Jaegar (1986). If γ > 0, then the role of heat conduction becomes progressively smaller
with time, and the temperature evolution of the matrix is controlled by advection of
heat except across a sharp thermal boundary layer dividing a region near the source
with the injection temperature and a warm region with the far-field temperature.

In the intermediate case, γ = 0, corresponding to constant injection rate, Q, both
the advective and conductive heat transport remain important for all time, and the
system admits a different class of similarity solutions T (η) where η = r/2(κt)1/2. These
solutions illustrate the transition from advection- to diffusion-controlled heat transfer
as the flow rate decreases from large values Q � κ to smaller values Q � κ, and so
we focus upon these herein. In these solutions, the interface is located at

η = ω = [Q/2φκ]1/2. (2.4)

In similarity coordinates, the diffusion equation becomes

−
(

(1− λwQ/κ)

η
+ 2η

)
dT

dη
=

d2T

dη2
(2.5)

with solution

T (η) = To + ∆T

∫ η

0

η(λwβ−1) exp(−η2)dη (2.6)

where β = Q/κ and ∆T = (T2 − T0)/
∫ ∞

0
η(λwβ−1) exp(−η2)dη, To is the source tem-

perature and T2 is the far-field temperature. In these solutions there is no net heat
flux supplied to the origin for Q > 0 since ηdT/dη → 0 as η → 0. This is a result
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Figure 2. Illustration of the dimensionless temperature profile T (η) in the newly injected liquid
(dashed) and original liquid (solid) for the cases of (i) slow, β = 0.01; (ii) intermediate, β = 1 and
(iii) fast, β = 100 injection.

of the advection of fluid away from the source, and contrasts with the temperature
field produced by a line source in a solid body, in which there is finite net heat flux
transferred to the source (Carslaw & Jaegar 1986). In the present case, the absence of
a net heat flux at the origin demands that the temperature at the source η = 0 equals
the initial injection temperature of the liquid.

The temperature at the interface between the newly injected liquid and the original
liquid is given by Ti = T (ω) and has the form

Ti =

T2

∫ ω

0

ηλwβ−1 exp(−η2)dη + T0

∫ ∞
ω

ηλwβ−1 exp(−η2)dη∫ ∞
0

ηλwβ−1 exp(−η2)dη

. (2.7)

In figure 2 we compare the temperature profile for three injection rates, illustrating
how the heat transfer differs from the diffusion-limited slow injection case to the
advection-limited fast injection case. Figure 3 shows how the interface temperature
varies with injection rate. Three thermal regimes may be identified.

Fast injection. For βλw > 1 the interface migrates much more rapidly than heat
may be conducted from the far field. The liquid is heated to the far-field temperature
by cooling the rock near the source and the liquid attains the far-field temperature
long before reaching the leading edge of the zone of newly injected liquid. In this
advection-limited case, the cold region near the source is divided from the far-field
high-temperature region by a sharp internal boundary layer (figure 2, β = 100).

Intermediate injection. If φ < β < 1/λw , then again the rate of advance of the
liquid through the interstices is greater than the rate of heat conduction from the
far field. As a result, a large fraction of the newly injected liquid attains the far-field
temperature. However, the isotherms are now advected more slowly than the rate of
heat conduction and so the internal boundary layer extends back to the source (figure
2, β = 1). As in the case of very fast injection, the thermal energy used to raise the
temperature of the injected liquid originates from the cooling of the rock near the
source.

Slow injection. In the case β < φ, the liquid front advances much more slowly
than the rate of heat diffusion (figure 2, β = 0.01). Now the newly injected liquid
occupies a small inner part of the thermal boundary layer between the source and the
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Figure 3. Variation of the dimensionless temperature of the interface between the original and the
newly injected liquid, (Ti − To)/(T2 − To), as a function of the dimensionless injection rate β. For
sufficiently high flow rates, the liquid advances ahead of the thermal boundary layer and therefore
has a temperature equal to that of the far field.

far field, and some of the original liquid is cooled. The temperature of the interface
with the original liquid therefore decreases as the injection rate decreases to values
β < φ (figure 3). As the injection rate continues to decrease, the temperature profile
approaches the purely diffusive similarity solution for a line source of heat (cf. Carslaw
& Jaegar 1986), except in the region η < O(Q/κ) near the source, in which advection
remains important.

We have tested these solutions with a series of laboratory experiments and these
are reported in §3. We then extend the model to describe the temperature profile
which develops as liquid invades a superheated reservoir. In that case, the interface
temperature is constant, but the mass fraction vaporizing changes according to the
amount of heat conducted into the interface from the far field.

3. Experimental model of liquid–liquid heat transfer
We have carried out a series of experiments to test the model predictions for

injection of liquid into a hot permeable layer saturated with liquid (§2). The apparatus
consisted of a cylindrical bed of consolidated permeable sand, of radius 25 cm and
3 cm deep enclosed between two impermeable boundaries of epoxy. The sand bed
consisted of 82% 30 mesh sand and 18% Portland cement. Twelve thermocouples
were embedded into the sand layer located at 1 cm radial increments from the source,
and these were connected to a digital data recorder. Before each experiment, carbon
dioxide was injected into the centre of the slab through an injection port in order to
displace the air. Cold de-ionized water was then injected in order to displace the CO2.
Any remaining gas dissolved in this water. Insulating material was then placed on
the upper and lower surfaces of the epoxy boundaries and the apparatus connected
to a water pump and heater.

In each experiment, water was supplied at a constant flow rate. This was varied
from experiment to experiment in the range q ∼ 5–50 ml min−1. For convenience,
in the experiments hot water was in fact injected into a cold liquid-filled sand bed,
and several experiments were conducted using different flow rates and injection
temperatures. After completion of the experiments, two CT scans of the sand layer
apparatus were taken, one with the core fully dry and one with the core fully saturated
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with liquid. Using these measurements, the porosity was estimated to be 35 ±3%.
Using this estimate together with the known properties of the sand, Cps = 950 ±
50 J K−1 kg−1, ρsCpsκs = 5.2 W m−1 K

−1
and ρs = 2500 kg m−3, and the liquid water

Cpl = 4216 J K−1 kg−1, ρlCplκl = 0.681 W m−1 K−1 and ρl = 961 kg m−3, the effective
thermal diffusivity of the porous medium was calculated to be 1.23± 0.1× 10−6m2 s−1

using the relationship (Batchelor 1974)

κ =
φκlCplρl + (1− φ)κsCpsρs
φCplρl + (1− φ)Cpsρs

. (3.1)

During each experiment, temperature measurements were made at several times.
In figure 4, we compare these temperature profiles with the theoretical prediction
for β = 0.67 and β = 3.4. In both cases, λw ≈ 1.37. The radial locations of these
measurements have been non-dimensionalised, η = r/(κt)1/2, and the temperature
profiles are shown as a function of η. For both the fast injection case β = 3.4 and the
slower injection case β = 0.67, the experimental results collapse very accurately onto
the theoretical temperature profiles. These experimental results support the thermal
picture of fast injection described in Part 1, in which the liquid was assumed to attain
the vaporization temperature some distance behind the interface. We now build on
these results to analyse the vaporization associated with slow liquid injection into a
superheated reservoir.

4. Liquid injection into a vapour-saturated superheated reservoir
If the reservoir is superheated and vapour saturated, then a fraction f of the liquid

may vaporize as the liquid invades the reservoir. In Part 1, we described the case of high
flow rates for which the dynamic vapour pressure, required to drive new vapour ahead
of the boiling front, becomes important (see the Appendix) and conduction of heat
from the far-field is negligible. We found that as the liquid supply rate increases, the
vapour pressure at the interface also increases. This allows the saturation temperature
at the interface to approach the far-field reservoir temperature, thereby reducing the
superheat available for vaporization and decreasing the mass fraction of liquid which
vaporizes.

In the present work, we consider smaller flow rates, Q 6 10−1-10−3 m2 s−1, for which
the dynamic vapour pressure is small (see the Appendix). We therefore approximate
the vapour pressure as being constant and equal to that of the far field. In this case,
the vapour migrates ahead of the boiling front with Darcy speed fQρl/rρv , where
the flux of vapour produced at the boiling front is fQ and ρv is the vapour density;
for convenience henceforth we refer to f as the mass fraction which vaporizes. The
temperature in the vapour is governed by the advection–diffusion equation

∂T

∂t
+
fλvQ

r

∂T

∂r
=
κ2

r

∂

∂r

(
r
∂T

∂r

)
(4.1)

where κ2 is the average diffusivity of the vapour and solid matrix (cf. (2.2)) and
λv = ρvCpv/(φρvCpv + (1 − φ)ρsCps) is the dimensionless specific heat of the vapour.
λv ≈ 6.4 × 10−4 at atmospheric pressure in porous sandstone of porosity 0.19, using
the properties Cpv = 2028 J kg−1 K−1, ρv ∼ 0.6 kg m−3 and ρvCpvκv = 0.025 W m−1 K−1.
Typically, for φ� 1, |κ2 − κ| � κ, and so for simplicity in the following analysis we
assume that κ2 ∼ κ, although the model may be readily extended to account for this
difference. The temperature in the liquid is again governed by equation (2.1). At the
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Figure 4. Comparison of the model predictions with experimental measurements of temperature as
a function of distance from the source. Distances are shown in dimensionless form η = r/(2κt)1/2.
Results are shown for two experiments in which hot liquid is injected into a cold water saturated
layer. (a) β = 0.67, T (input)=63◦C and T (initial)=20.2◦C and (b) β = 3.42, T (input)=59◦C and
T (initial)=21◦C. Symbols show the temperature at different times during the experiment. The solid
lines correspond to the theoretical prediction.

interface between the liquid and vapour, the conservation of heat takes the form[
∂T

∂r

]+

−
=
fQρlL

κρCpr
(4.2)

where L is the latent heat of vaporization and κρCp = φκlρlCpl + (1−φ)κsρsCps is the
mass averaged thermal conductivity of the solid matrix and fluid, defined in terms of
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the density and specific heat of the constituents (cf. (3.1)). The temperature is given
by the Clausius–Clapeyron relation T = Ts(P ) while, as in §2, the temperature at the
source, η = 0, equals the initial temperature To.

For a constant source of liquid, Q, the system admits similarity solutions in which
f is a constant and, as in §2, in these solutions, both the advection and conduction of
heat are important. The temperature distribution is given in terms of the similarity
variable η = r/2(κt)1/2 by

T (η) = Ts + A

∫ η

ω

η[λvfQ/κ−1] exp(−η2)dη for η > ω (4.3)

and

T (η) = Ts + B

∫ η

ω

η[λwQ/κ−1] exp(−η2)dη for η < ω (4.4)

where the boiling interface is located at

η = ω = [Q(1− f)/2φκ]1/2. (4.5)

The constants A and B and the mass fraction of the injected liquid which vaporizes, f,
are given in terms of the reservoir superheat, T2 − Ts, the initial liquid undercooling,
To − Ts, and the injection rate Q. The conservation of heat at the interface, η = ω,
has the form

Bω[Qλw/κ] exp(−ω2)− Aω[fQλv/κ] exp(−ω2) = −LfQ
κCp

. (4.6)

The continuity of temperature at the source, η = 0, requires

To = Ts + B

∫ 0

ω

η[λwQ/κ−1] exp(−η2)dη (4.7)

and in the far field, η →∞,

T2 = Ts + A

∫ ∞
ω

η[λvfQ/κ−1] exp(−η2)dη. (4.8)

We have solved equations (4.6)–(4.8) to determine how the mass fraction which
vaporizes, f, varies with (i) the ratio of the injection rate to the thermal diffusivity,
β = Q/κ; (ii) the ratio of the initial liquid undercooling to the reservoir superheat,
u = (Ts − To)/(T2 − Ts); and (iii) the ratio of the latent heat of vaporization to the
initial reservoir superheat, S = L/Cp(T2−Ts). The results are shown in figure 5, where
it is seen that the mass fraction vaporizing smoothly decreases from a value close
to unity to a smaller, near-constant value ff say, as the flow rate increases to values
β > O(1). The high-flow-rate value ff decreases as the latent heat of vaporization
increases, but is independent of the initial undercooling of the liquid. However, as the
undercooling increases, the critical flow rate at which the mass fraction vaporizing
first begins to decrease is smaller. These controls on the mass fraction which vaporizes
may be understood by reference to detailed thermal profiles corresponding to different
flow rates. In figure 6 we present temperature profiles in the liquid and vapour for
three different injection rates, focusing on the slow injection rate regime in figure 6(a)
(β = 0.006) and the fast regime in figure 6(b) (β = 7.4).

Fast flow: λwβ > 1. For high injection rates, the Darcy velocity of the liquid exceeds
the rate of thermal diffusion and so heat cannot be conducted back to the source.
Near the source, the liquid temperature remains close to the injection temperature
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Figure 6. Illustration of the temperature profile, T (η), in the liquid and vapour for the cases of (i)
slow, β = 0.006; (ii) intermediate, β = 0.2 and (iii) fast, β = 7.4 injection. The liquid is shown by
the solid lines and vapour by the dashed lines. (a) The structure near the source, (b) the structure
further from the source. In this plot, the temperature of the liquid is 0, the boiling temperature is 1
and the far-field vapour temperature is 2.

To (figure 6a,b, β = 7.4). Once the liquid has invaded a distance η ∼ O((λwβ − 1)1/2),
a narrow thermal boundary layer develops and the liquid is rapidly heated to the
vaporization temperature. The liquid then migrates through a nearly isothermal zone
to the boiling interface. The boiling interface advances sufficiently rapidly that there
is negligible heat conducted into the liquid from the far-field. Asymptotically, the
mass fraction vaporizing then depends only on the reservoir superheat

f ∼ 1

1 + Lφ/Cp(T2 − Ts)
=

1

1 + Sφ
. (4.9)

This limit corresponds to the slow injection regime studied in Part 1 in which vapour
pressure effects were not important. The mass fraction vaporizing is independent of
the initial temperature of the liquid but increases with the reservoir superheat since
more energy is released by the rock as it is cooled by the invading liquid.

Intermediate flow: βλw < 1 < ω. In this case, the Darcy velocity of the liquid is
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comparable to the rate of thermal diffusion, and so the internal thermal boundary
layer now extends back to the origin (figure 6a, β = 0.2). However, since the boiling
front migrates more rapidly than the rate of thermal diffusion, the liquid is heated
up to the interfacial temperature long before reaching the interface. Therefore, a
large isothermal liquid region again develops behind the boiling front, and the mass
fraction vaporizing has the asymptotic form (4.9). The difference between this case
and the fast injection case may be of interest for interpreting field data, since near to
the well very different thermal profiles develop.

Slow flow: ω < 1. If the interstitial speed of the liquid is small compared to that
of thermal diffusion, then the thermal boundary layer extends from the cold source
through the whole liquid region and beyond the boiling front into the vapour (figure
6a, β = 0.006). As a result, there is a significant heat flux conducted from the region
ahead of the interface into the liquid zone. This cooling of the vapour zone increases
the rate of vaporization and in the limit of very small injection rates, β � 1, f → 1.
As for the liquid–liquid case (§2), there is no net heat flux supplied to the origin,
η = 0, so that a small region of liquid spreads from the origin. However, conduction
of heat from the superheated reservoir far ahead of the boiling front provides so
much heat that most of the liquid vaporizes.

Using the same experimental method as described in §3, we conducted a series
of further laboratory experiments in which liquid water was injected into a porous
cylindrical bed of sandstone, of thickness 2.4 cm and radius 25 cm, and porosity
φ = 0.19±0.1. The bed was preheated to temperatures in the range 105–120◦C. Using
the thermal properties of the sandstone and water (cf. §3) κ = 1.6± 0.1× 10−6m2 s−1

(cf. (3.1)), while λw ∼ 1.5 (cf. (2.3)). In figure 7, we present data from a typical
experiment in which the flow rate was 10 ml min−1, corresponding to β = 0.7
with the source temperature 73◦C and initial sandstone temperature of 109◦C. The
temperature was measured by thermocouples located at 12 different radii in the bed,
and the temperature of each thermocouple was recorded at 5 s intervals. In the figure,
the temperature record of each thermocouple is plotted as a function of the similarity
variable η = r/(κt)1/2. The measurements are compared with the corresponding
similarity solution for β = 0.7 (solid line), using the value L = 2088 J kg−1 for the
latent heat of vapour at 100◦C (Haywood 1972). Again, there is very good agreement
between the model similarity solution and the experimental data.

5. Extension to model fractured rock
5.1. Permeable regions

The model presented in §§2 and 4 applies to an isolated permeable layer of cylindrical
geometry in which the flow and heat transfer is purely radial. The solutions may be
applied to examine the flow in a relatively deep porous sedimentary layer in which
the effects of cross-flow heat transfer are small. As long as the along-flow conduction
length, (κt)1/2, is smaller than the width of the layer, D say, then cross-flow heat
transfer is small, and the solutions of §§2 and 4 apply. For example, the Cerro Prieto
geothermal field in northern Mexico includes several deep layers of sediment of nearly
100 m vertical extent (Truesdell et al. 1995). Therefore, the model is appropriate for
times much smaller than τ ∼ 1010s ∼ 100 years.

Typical liquid injection rates in geothermal reservoirs lie in the range 10−4 − 10−2

m2 s−1. For such rates, the liquid spreads more rapidly than the rate of thermal
diffusion (§2) and for injection into a water-saturated non-superheated reservoir, the
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Figure 7. Comparison of the similarity theory with a laboratory experiment in which water,
with initial temperature 73◦C, was injected into a superheated cylindrical sandstone bed of initial
temperature 109◦C. In the experiment, the injection rate was 10 ml min−1, corresponding to β = 0.7.
Temperature measurements for twelve different thermocouples which were located at various radii
from the centre of the sandstone bed are shown at 12 times during the course of the experiment. The
temperature of each thermocouple is shown as a function of the similarity variable η = r/(κt)1/2.
These are compared with the theoretical similarity solution predicted in §4 (solid line).

temperature profile follows the fast regime of §2. For injection at rates 10−4 − 10−2

m2 s−1 into a superheated zone, vapour pressure effects are small (see the Appendix)
and the fast regime of §4 applies. Equation (4.9) then suggests that for typical reservoir
superheats of the order of a few degrees, the Stefan number of vaporization, S , takes
values of order 10–100 (cf. Part 1), and the model predicts that the mass fraction of
liquid which vaporizes lies in the range 0.2–0.6.

5.2. Multiply fractured rock

The model is also of some use for examining liquid flow into a multiply fractured
rock. The similarity solutions describe the liquid migration and vaporization within
permeable fractures at very small and at long times. For very small times, the
cross-fracture heat transfer is small, and the similarity solutions of §§2 and 4 apply
for the individual fractures. For permeable fractures of width 0.1 mm–1 cm, and
typical thermal diffusivities of order 10−7m2 s−1, this regime will thus apply for times
τ� 0.1–1000 s.

In contrast, over very long times, t � d2/κ, where d is the mean interfracture
distance, heat transfer between the fractures and the neighbouring rock will become
relatively rapid, and the fracture–host rock system will thermally equilibrate in the
cross-fracture direction. For fracture spacings of 0.1–1 m, the system requires of order
0.1–1 years to equilibrate. Assuming that the fractures are uniformly distributed
throughout the rock, so as to produce an effectively uniform permeability on a scale
larger than the fractures (cf. Dullien 1992; Fitzgerald & Woods 1995), then the flow
will on average be directed away from the source. The solutions of §§2 and 4 again
apply, but now in terms of the average porosity of the fractures and host rock. In
this long-time regime, heat is supplied to the boiling front from the host rock, thereby
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increasing the mass fraction of liquid which boils. Indeed, for fractures with internal
porosity of order φf , embedded in a host rock with an effective macro-porosity
φm, then, according to the fast flow regime (§4, (4.9)), the fraction which vaporizes
increases by a factor (1 + Sφf)/(1 + Sφm), and the front speed decreases by the same
factor.

5.3. Anisotropic permeability structure

In many cases, there is a preferred direction along which the permeability exceeds
that in the other directions, possibly owing to alignment of small fractures or of
grains in layered sediment deposits. For such an anisotropic medium, we can apply
the results of §4 to model the two-dimensional flow of the vaporizing front from a
well in the relatively rapid liquid flow regime, Q ∼ 10−2 − 10−4 m2 s−1. This regime
is appropriate for injection in many geothermal systems (§5.1) and applies if liquid
invades the reservoir more rapidly than heat may be conducted from the far-field, and
also if there is negligible dynamic pressure associated with the migration of the vapour
ahead of the interface (see the Appendix). In this case, a sharp thermal boundary layer
develops at the boiling front, across which the vapour is heated from the boiling point
to the temperature of the far field. A second thermal boundary layer develops within
the liquid zone, across which the liquid is heated from the injection temperature
to the boiling point, although this boundary layer is some distance behind the
interface.

If we denote the permeability as kx in the preferred flow direction, x, and ky normal
to this direction, then for the fast flow regime liquid injected at a constant rate Q will
spread elliptically, so that after time t it fills the region

x2ky + y2kx 6 fQt(kxky)
1/2/φ. (5.1)

Here f is the constant mass fraction of liquid which vaporizes and is given by (4.9).
The result applies as long as the rate of advance of the liquid in the less-permeable
y-direction far exceeds the rate of diffusion of heat

fQ(ky/kx)
1/2 � φκ (5.2)

so that f is independent of direction. For typical liquid flow rates Q, per unit length
along the injection well, in the range 0.01− 0.0001 m2 s−1, condition (5.2) is satisfied
for permeability ratios ky/kx > 10−8−10−12. We also require the vapour pressure scale
(see the Appendix) to be greater than the distance travelled by the advancing layer
of newly formed vapour, so that there is no pressure build up in the advancing layer
of vapour. For a layer in which the dominant permeability kx has value 10−12− 10−14

m2, the dynamic vapour pressure is small when (cf. (A5)) fQ� (0.01− 1.0)(ky/kx)
1/2.

Comparing this with typical geothermal injection rates 0.0001−0.01 m2 s−1, we deduce
that the solutions (5.1) are valid when ky/kx > 10−4; for smaller permeability ratios,
the dynamic vapour pressure becomes significant, thereby reducing the mass fraction
which vaporizes. Since the permeabilities of fractured rock are typically of order
10−12 − 10−16, the solution (5.1) thus provides a powerful approximation for a wide
range of realistic injection conditions in geothermal systems.

6. Summary
In this contribution we have derived similarity solutions to describe the evolution

of the temperature as cold liquid is injected into a porous layer initially saturated
with hot liquid. The solutions identify that for slow injection heat diffusion from the
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far field is dominant and so some of the original fluid in the porous layer is cooled
in order to heat up the newly injected liquid. For faster injection, the leading edge of
the newly injected liquid advances so rapidly that there is negligible conduction of
heat from the far field and little cooling of the original liquid. Instead, a region of the
host rock around the source is cooled, and this provides the thermal energy to heat
up the newly injected liquid to the original temperature of the permeable layer. For
sufficiently large flow rates, the isotherm advection speed through the porous layer
exceeds the rate of heat conduction. As a result, the inner region, which is cooled
to the injection temperature of the liquid, is separated from the outer region, whose
temperature equals that of the far field, by a sharp internal boundary layer. We
have confirmed these theoretical predictions with a series of laboratory experiments
in which liquid of one temperature was injected into a porous layer saturated with
liquid of a second temperature.

We then extended the analysis to consider the slow injection of cold liquid into a
superheated permeable layer initially saturated with vapour, thereby complementing
Part 1 in which we considered fast injection. We have found that two main vaporiza-
tion regimes develop depending on the liquid injection rate in comparison with the
rate of thermal diffusion. For small injection rates, heat may be conducted from the
far field into an advancing layer of liquid, and so the mass fraction of the liquid which
boils increases towards unity. For higher flow rates, this conductive heat transfer be-
comes ineffective. Instead, as the liquid invades the hot permeable rock, the cooling
of the rock near the source heats the liquid to the vaporization temperature, and a
large region of nearly isothermal liquid, with the vaporization temperature, develops
behind the boiling front. The liquid then boils as it invades the hot rock, with the
mass fraction which vaporizes being controlled by the release of the superheat of
the rock. Again we successfully tested the predictions of the model with a laboratory
experiment in which liquid water was injected into a superheated bed of sandstone.

Appendix
The dynamics of the vapour migrating ahead of the interface may be described

using Darcy’s Law, appropriate for the low-Reynolds-number flow through the pore
spaces (Fitzgerald & Woods 1995)

µu = −k∇P (A 1)

where k is the permeability and µ the dynamic viscosity of the vapour, which remains
approximately constant over the typical range of pressures in a geothermal reservoir
(Pruess et al. 1987; Haywood 1972). If we couple this with an equation of state for
the vapour

P = ρvRT (A 2)

and the equation for mass conservation

φ
∂ρ

∂t
+ ∇ · uρv = 0 (A 3)

we obtain the dynamic equation for the vapour

∂

∂t

(
P

T

)
=

k

φµ
∇ ·
(
P

T
∇P
)
. (A 4)

This equation identifies that the vapour pressure evolves over a typical length
scale Lp ∼ (kP t/φµ)1/2. The ratio of the pressure-evolution length scale, Lp, to
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the temperature-evolution length scale, Lt ∼ (κt)1/2, given by (kP/φµκ)1/2 is typi-
cally of order 103 − 104 for systems of permeability 10−12 − 10−14 m2 and porosity
10−2 (§2.1). We deduce that the pressure remains nearly constant across any thermal
boundary layers associated with the migration and vaporization of liquid in a porous
layer (Part 1).

Furthermore, the dynamic vapour pressure associated with the production of new
vapour at the interface only becomes a significant fraction of the background reservoir
pressure if the advancing region of newly formed vapour, (fQρvt/ρl)

1/2, exceeds the
pressure length scale Lp (cf. Fitzgerald & Woods 1995). This requires

fQ >
kPρl

φµρv
. (A 5)

For typical permeabilities of the order 10−12–10−14 m2, this requires injection rates Q
greater than 1.0–0.01 m2 s−1. Therefore, the thermal models in the present paper are
only valid for dimensionless injection rates β = Q/κ < 104 − 106 (§§2–4). For higher
injection rates, the effects of vapour pressure would become important and the effects
described in Part 1 dominate.
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